Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes.

نویسندگان

  • Srinivas D Narasipura
  • Lisa J Henderson
  • Sidney W Fu
  • Liang Chen
  • Fatah Kashanchi
  • Lena Al-Harthi
چکیده

The Wnt/β-catenin pathway is involved in diverse cell functions governing development and disease. β-Catenin, a central mediator of this pathway, binds to members of the TCF/LEF family of transcription factors to modulate hundreds of genes. Active Wnt/β-catenin/TCF-4 signaling plays a significant role in repression of HIV-1 replication in multiple cell targets, including astrocytes. To determine the mechanism by which active β-catenin/TCF-4 leads to inhibition of HIV replication, we knocked down β-catenin or TCF/LEF members in primary astrocytes and astrocytomas transiently transfected with an HIV long terminal repeat (LTR)-luciferase reporter that contained an integrated copy of the HIV LTR-luciferase construct. Knockdown of either β-catenin or TCF-4 induced LTR activity by 2- to 3-fold under both the episomal and integrated conditions. This knockdown also increased presence of serine 2-phosphorylated RNA polymerase II (Pol II) on the HIV LTR as well as enhanced its processivity. Knockdown of β-catenin/TCF-4 also impacted tethering of other transcription factors on the HIV promoter. Specifically, knockdown of TCF-4 enhanced binding of C/EBPβ, C/EBPδ, and NF-κB to the HIV LTR, while β-catenin knockdown increased binding of C/EBPβ and C/EBPδ but had no effect on NF-κB. Approximately 150 genes in astrocytes were impacted by β-catenin knockdown, including genes involved in inflammation/immunity, uptake/transport, vesicular transport/exocytosis, apoptosis/cellular stress, and cytoskeleton/trafficking. These findings indicate that modulation of the β-catenin/TCF-4 axis impacts the basal level of HIV transcription in astrocytes, which may drive low level/persistent HIV in astrocytes that can contribute to ongoing neuroinflammation, and this axis also has profound effects on astrocyte biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression

T-cell factor (Tcf)/lymphoid-enhancer factor (Lef) proteins are a structurally diverse family of deoxyribonucleic acid-binding proteins that have essential nuclear functions in Wnt/β-catenin signalling. Expression of Wnt/β-catenin target genes is highly dependent on context, but the precise role of Tcf/Lef family members in the generation and maintenance of cell-type-specific Wnt/β-catenin resp...

متن کامل

Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF.

Active canonical Wnt signaling results in recruitment of β-catenin to DNA by TCF/LEF family members, leading to transcriptional activation of TCF target genes. However, additional transcription factors have been suggested to recruit β-catenin and tether it to DNA. Here, we describe the genome-wide pattern of β-catenin DNA binding in murine intestinal epithelium, Wnt-responsive colorectal cancer...

متن کامل

β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors

The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (...

متن کامل

Beta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells

Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...

متن کامل

Cross-regulation of β-catenin–LEF/TCF and retinoid signaling pathways

Vitamin A derivatives (retinoids) are potent regulators of embryogenesis, cell proliferation, epithelial cell differentiation and carcinogenesis [1]. In breast cancer cells, the effects of retinoids are associated with changes in the cadherin–β-catenin adhesion and signaling system [2,3]. β-catenin is a component of the Wnt signaling pathway, which regulates several developmental pathways [4]. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 2012